local_malloc: malloc() for OpenCL _ local memory Ari

John Kloosterman, Joel Adams (advisor), Calvin College, Grand Rapids, MI

Abstract

One of the complexities of writing kernels in
OpenCL is managing the scarce per-workgroup
___local memory on a device. For instance,
temporary blocks of local memory are
necessary to implement algorithms like non-
destructive parallel reduction. However, all
__local memory must be allocated at the
beginning of a kernel, and programmers are
responsible for tracking which buffers can be

reused in a kernel. We propose and implement an
extension to OpenCL C that provides amalloc()-

like interface for allocating workgroup memory.
This extension was implemented by using an
extension to the Clang compiler to perform a
source-to-source transformation on OpenCL C
programs.

/1. Parse code and construct call
tree

a call tree

local free()s, and function calls

o Ignore calls to OpenCL built-ins

the kernel

malloc 128 free 128

generate_sequence

malloc 256 free 256

"

References
|1] clang: a C language family frontend for LLVM. http://clang.llvm.org.

,@ This work supported in part by NSF DUE-1225739

o No recursion in OpenCL means call graph is

o Record the sequence of local malloc()s,

/

Motivation: parallel reduction

Must be stored in
temporary per-
workgroup buffer in

Without

local malloc(),

this buffer must be
allocated at the
beginning of the kernel,
instead of by the
implementation of the
algorithm.

Benefits: module reusability, reuse of __local
memory by other code, memory allocation near use

"

2. Compute per-function
maximum allocation

o Maximum allocation = the maximum amount
of memory a function and its children in the call
tree have allocated at any given time

o Amount of memory to reserve for the kernel
is the maximum allocation of the root node

the kernel

“

max allocation
384

malloc 128 free 128

generate_sequence

max allocation
256

malloc 256 free 256

/

local memory space.

o local malloc({bytes}) allocates
___local memory

o local free({bytes}) freesthe
previously allocated {bytes} memory.

o Host C++ library performs code

transformations. '

/O. Source code before processing\

void generate sequence(void) {
__local uchar *buf = local malloc(256);
buf[get local id(@)] = get local id(9);
local free(256);

}

__kernel void the kernel(void) {
__local uchar *buf = local malloc(128);

generate_sequence();

local free(128);

The compiler modifies the kernel by inserting:

(1) Definitions of local _malloc() and
local free() atbeginning of source
(2) New parameter in each function def & call

to pass buffer and offset of next allocation
(3) Code to allocate buffer when kernel starts

\}

3. Rewrite source code

/* implementations of local malloc(), local free() */ (::)

void generate sequence(LocalMallocState * 1local malloc state) {
__local uchar *buf = local malloc(256, local malloc state);
buf[get local id(©)] = get local id(9);
local free(256, _ local malloc state);

}

kernel void a _kernel(void) {
__local char _ local malloc buffer[384]; <::>

LocalMallocState _ local malloc state backing;
LocalMallocState * local malloc state =
& local malloc_state backing;
local malloc init(
__local malloc buffer, 384,
__local malloc_state);

__local uchar *buf = local malloc(128, local malloc state);

generate_sequence(_ local malloc state);
local free(128, local malloc state); (::)

This source code can then be compiled by

Qendors’ OpenCL implementations at runtiny

