
local_malloc: malloc() for OpenCL __local memory
John Kloosterman, Joel Adams (advisor), Calvin College, Grand Rapids, MI

void generate_sequence(void) {
__local uchar *buf = local_malloc(256);
buf[get_local_id(0)] = get_local_id(0);
local_free(256);

}

__kernel void the_kernel(void) {
__local uchar *buf = local_malloc(128);
generate_sequence();
local_free(128);

}

0. Source code before processing

1. Parse code and construct call

tree

the_kernel

generate_sequence

free 128

free 256malloc 256

malloc 128

o No recursion in OpenCL means call graph is
a call tree

o Record the sequence of local_malloc()s,
local_free()s, and function calls

o Ignore calls to OpenCL built-ins

2. Compute per-function

maximum allocation

the_kernel

generate_sequence

free 128

free 256malloc 256

malloc 128

o Maximum allocation = the maximum amount
of memory a function and its children in the call
tree have allocated at any given time

o Amount of memory to reserve for the kernel
is the maximum allocation of the root node

3. Rewrite source code

The compiler modifies the kernel by inserting:

① Definitions of local_malloc() and
local_free() at beginning of source

② New parameter in each function def & call
to pass buffer and offset of next allocation

③ Code to allocate buffer when kernel starts

API

Abstract

One of the complexities of writing kernels in
OpenCL is managing the scarce per-workgroup
__local memory on a device. For instance,
temporary blocks of __local memory are
necessary to implement algorithms like non-
destructive parallel reduction. However, all
__local memory must be allocated at the
beginning of a kernel, and programmers are
responsible for tracking which buffers can be
reused in a kernel. We propose and implement an
extension to OpenCL C that provides a malloc()-
like interface for allocating workgroup memory.
This extension was implemented by using an
extension to the Clang compiler to perform a
source-to-source transformation on OpenCL C
programs.

/* implementations of local_malloc(), local_free() */

void generate_sequence(LocalMallocState *__local_malloc_state) {
__local uchar *buf = local_malloc(256, __local_malloc_state);
buf[get_local_id(0)] = get_local_id(0);
local_free(256, __local_malloc_state);

}

__kernel void a_kernel(void) {
__local char __local_malloc_buffer[384];
LocalMallocState __local_malloc_state_backing;
LocalMallocState *__local_malloc_state =

&__local_malloc_state_backing;
local_malloc_init(

__local_malloc_buffer, 384,
__local_malloc_state);

__local uchar *buf = local_malloc(128, __local_malloc_state);
generate_sequence(__local_malloc_state);
local_free(128, __local_malloc_state);

}

o local_malloc({bytes}) allocates
__local memory

o local_free({bytes}) frees the
previously allocated {bytes} memory.

o Host C++ library performs code
transformations.

This work supported in part by NSF DUE-1225739

max allocation
384

max allocation
256

Motivation: parallel reduction

Must be stored in
temporary per-
workgroup buffer in
__local memory space.

Without
local_malloc(),
this buffer must be
allocated at the
beginning of the kernel,
instead of by the
implementation of the
algorithm.

This source code can then be compiled by
vendors’ OpenCL implementations at runtime .

1

2

2

3

Benefits: module reusability, reuse of __local
memory by other code, memory allocation near use

References
[1] clang: a C language family frontend for LLVM. http://clang.llvm.org.

