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Abstract

One of the complexities of writing kernels in
OpenCL is managing the scarce per-workgroup
___local memory on a device. For instance,
temporary blocks of  local memory are
necessary to implement algorithms like non-
destructive parallel reduction. However, all
__local memory must be allocated at the
beginning of a kernel, and programmers are
responsible for tracking which buffers can be

reused in a kernel. We propose and implement an
extension to OpenCL C that provides amalloc()-

like interface for allocating workgroup memory.
This extension was implemented by using an
extension to the Clang compiler to perform a
source-to-source transformation on OpenCL C
programs.
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o No recursion in OpenCL means call graph is

o Record the sequence of local malloc()s,

/

Motivation: parallel reduction

Must be stored in
temporary per-
workgroup buffer in

Without

local malloc(),

this buffer must be
allocated at the
beginning of the kernel,
instead of by the
implementation of the
algorithm.

Benefits: module reusability, reuse of __local
memory by other code, memory allocation near use

"

2. Compute per-function
maximum allocation

o Maximum allocation = the maximum amount
of memory a function and its children in the call
tree have allocated at any given time

o Amount of memory to reserve for the kernel
is the maximum allocation of the root node

the kernel
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local memory space.

o local malloc({bytes}) allocates
___local memory

o local free({bytes}) freesthe
previously allocated {bytes} memory.

o Host C++ library performs code

transformations. '

/O. Source code before processing\

void generate sequence(void) {
__local uchar *buf = local malloc(256);
buf[get local id(@)] = get local id(9);
local free(256);

}

__kernel void the kernel(void) {
__local uchar *buf = local malloc(128);

generate_sequence();

local free(128);

The compiler modifies the kernel by inserting:

(1) Definitions of local _malloc() and
local free() atbeginning of source
(2) New parameter in each function def & call

to pass buffer and offset of next allocation
(3) Code to allocate buffer when kernel starts

\}

3. Rewrite source code

/* implementations of local malloc(), local free() */ (::)

void generate sequence(LocalMallocState * 1local malloc state) {
__local uchar *buf = local malloc(256, local malloc state);
buf[get local id(©)] = get local id(9);
local free(256, _ local malloc state);

}

kernel void a _kernel(void) {
__local char _ local malloc buffer[384]; <::>

LocalMallocState _ local malloc state backing;
LocalMallocState * local malloc state =
& local malloc_state backing;
local malloc init(
__local malloc buffer, 384,
__local malloc_state);

__local uchar *buf = local malloc(128, local malloc state);

generate_sequence(_ local malloc state);
local free(128, local malloc state); (::)

This source code can then be compiled by

Qendors’ OpenCL implementations at runtiny




